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Abstract. To balance the requirements for data consistency and avail-
ability, organisations increasingly migrate towards hybrid data persis-
tence architectures (called polystores throughout this paper) comprising
both relational and NoSQL databases. The EC-funded H2020 TYPHON
project offers facilities for designing and deploying such polystores, other-
wise a complex, technically challenging and error-prone task. In addition,
it is nowadays increasingly important for organisations to be able to ex-
tract business intelligence by monitoring data stored in polystores. In this
paper, we propose a novel approach that facilitates the extraction of an-
alytics in a distributed manner by monitoring polystore queries as these
arrive for execution. Beyond the analytics architecture, we presented a
pre-execution authorisation mechanism. We also report on preliminary
scalability evaluation experiments which demonstrate the linear scalabil-
ity of the proposed architecture.
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1 Introduction

Data managed within an organisation may have significantly variable consistency
and availability requirements. For example, in the case of an e-commerce system,
data used to provide recommendations of products to users needs to be highly
available but the consistency of such data is not critical. By contrast, for other
subsets of data, such as data recording customer payments, compromising data
consistency to improve availability is not acceptable. As a result, organisations
increasingly need to use both relational and non-relational databases.

Nowdays, small businesses to big coorporations use monitoring tools and data
analytics to extract business intelligence based on data stored in such hybrid
database systems. This can lead to improvement on their systems and business
processes enhancing the customer experience. For example, in an e-commerce
system retailers often need to identify relationships of interest between products
they trade to provide useful recommendations to customers. Such knowledge can
be extracted by including analytics logic within the application business logic to
store into the database information of interest.
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We propose in this work another approach, that of monitoring the polystore
queries and extract analytics of interest as queries arrive for execution. This
approach comes with the benefit of calculating analytics in real-time without
the need of mixing analytics with core business logic. It also offers access to
data that may never be stored in a database (e.g., from “select” queries) or
data that were later deleted or updated. Consider the following two motivating
scenarios in the domain of an e-commerce website. Analytics developers are able
to monitor “trending products” by monitoring the number of “select” queries
arriving to the database for each product by the web application when users
browse to the details page of each product. In a modern large-scale system not
all user requests would end up in the database - given that there are HTTP-level
caches commonly in place in such systems. In addition, developers can identify
products that users almost bought by checking pairs of insert and delete queries
to each user’s basket for the same product.

In this paper we propose an architecture that consumes queries on poly-
stores to facilitate orthogonal real-time monitoring and predictive analytics. To
accommodate the large number of events that polystore-backed applications are
expected to generate in real-world scenarios, the proposed architecture is imple-
mented on top of proven big-data-capable frameworks such as Apache Flink [5]
and Apache Kafka [4]. Flink is used for distributing the processing/execution
workload of analytics applications while Kafka stores and dispatches the gener-
ated events in a form of a distributed log. Beyond the possibility of producing
analytics based on queries, the analytics component also offers a mechanism of
blocking the execution of commands that do not meet developer-defined criteria.

2 Background

Fig. 1: An overview of the architec-
ture of TYPHON.

The EU-funded Horizon 2020 project TY-
PHON [6] has developed a model-based
methodology and integrated technical of-
fering for designing, developing, querying,
evolving, analysing and monitoring scal-
able hybrid data persistence architectures.
It is based on three Domain-Specific Lan-
guages (DSLs), namely TyphonML, Ty-
phonDL and TyphonQL which facilitate
designing, deploying and querying hybrid
datastores, respectively.

Figure 1 shows an overview of the TY-
PHON architecture and in the following we briefly present the three aforemen-
tioned languages. Interested readers can find out about TYPHON and its dif-
ferent components in [6].
TyphonML TyphonML is a textual modelling language that supports the de-
sign of hybrid polystores. Developers, using TyphonML, create models that
include information regarding the concepts appearing in the polystore, their
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fields and their relationships. These models also include information about the
databases that are involved in the system. As a result, they represent the high-
level infrastructure of a hybrid polystore. An example is shown in Figure 2a.

(a) TyphonML syntax example. (b) TyphonDL syntax example.

Fig. 2: Example of the TyphonML and TyphonDL syntaxes.

TyphonDL Arguably, the abstraction gap between high-level TyphonML mod-
els and ready-to-use polystores is not negligible. To bridge this gap, an interme-
diate polystore deployment modelling language (TyphonDL) is used. TyphonML
models are transformed to TyphonDL models and are enhanced with more fine-
grained database-specific configuration details. TyphonDL models represent the
deployment infrastructure of that polystore in terms of the specific cloud plat-
form and deployment tools employed and are used to generate the necessary
installation and configuration facilities that, when executed, can assemble the
polystore in an automated manner. An example is shown in Figure 2b.

TyphonQL As data in a TYPHON polystore is distributed across a number
of heterogeneous databases a common data manipulation language is used. Ty-
phonQL is developed for perfoming data manipulation commands (e.g., insert,
delete, etc). Since TyphonQL queries3 are only executable on polystores precisely
specified using TyphonML and TyphonDL, dedicated compilers/interpreters ex-
ploit this rich structural and semantical information to type-check and transform
TyphonQL queries to high-performance native queries and APIs.

3 Proposed Architecture

An overview of the developed polystore data event publishing and processing ar-
chitecture is shown in Figure 3. Events undergo nine stages that are distributed
among two main interleaved phases; authorisation and analytics. The authori-
sation phase involves validating if a new incoming (TyphonQL) query will be
allowed execution by the polystore or not. The rules defined in authorisation
tasks can be based either on hardcoded conditions (e.g., value of a specific field
is above a threshold) or on information extracted from the history of previous
events processed through the stream processor.

3 An example TyphonQL “select” query: from User u select u.age where u.id==1
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Fig. 3: The proposed data event publishing and processing architecture.

Such a query authorisation mechanism would be also possible at the appli-
cation layer. An advantage though of using query authorisation at the level of
the polystore is that many applications that connect to the same polystore can
reuse those authorisation rules instead of having to implement and maintain
them individually in each application.

The second phase of analytics involves the continuous consumption of Ty-
phonQL queries that were executed. The tasks developed at this stage consume
PostEvent objects (the structure of thse objects is described in Section 3.1). Be-
low are the stages an event will go through as it progresses within the proposed
architecture (numbers in the list correspond to those shown in Figure 3).

1. A query is passed by a user to the TyphonQL engine for execution.
2. TyphonQL publishes a pre-execution event (PreEvent) for the query, push

it to a pre-event queue and waits for an authorisation decision of this event.
3. A stream processor (Apache Flink in the current implementation) dedicated

to authorisation, consumes messages from the authorisation queue to apply
the configured authorisation checks (presented in Section 3.2) before gener-
ating an authorisation decision of an event.

4. Following the application of the required authorisation checks, the stream
processor publishes the authorisation decision to an authorisation queue.

5. TyphonQL receives the authorisation decision it was waiting for.
6. Based on the outcome of the authorisation decision, TyphonQL will execute

the query received at step 1 or reject it.
7. A PostEvent object is generated and pushed to the analytics queue.
8. The analytics stream processor consumes the (post) event to which the rel-

evant analytics tasks (described in Section 3.3) could be applied.
9. The results of the analytics can be stored/published using different mecha-

nisms (e.g., a database, a filesystem, a web-service).

3.1 Data Event Structure

This section summarises the data analytics events structure metamodel which is
presented in Figure 4. Both PreEvents and PostEvents have a unique id and store
the TyphonQL query that generated them. The time when the query arrived for
execution to the polystore is stored in the queryTime attribute of PreEvents.
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A boolean flag, named authenticated, stores the result of the decision on if the
query is approved for execution or rejected. The resultSetNeeded boolean prop-
erty declares if the polystore needs to store the result of the execution of the
commands in the PostEvent object after it is executed. The slots list acts as an
extension mechanism to be utilised by polystore-backed applications. It hosts
key-value pairs of any custom properties that analytics developers need to pass
to the analytics workflow to accommodate their requirements when manipulat-
ing the events. A use of this feature is demonstrated in the scenario presented
in the evaluation (see Section 4).

Fig. 4: The event metamodel.

PostEvent instances will point to their corresponding PreEvent instance.
PostEvents also hold timestamps of when the execution started (startTime) and
when it ended (endTime). PostEvents store a success flag declaring whether the
execution of the query was successful or not. Finally, the result set returned from
the execution of the command is stored in the resultSet attribute.

3.2 Authorisation Tasks

The event authorisation architecture is based on the concept of authorisation
tasks. Each task contains logic that decides if a query should be executed or
not against the polystore. In the proposed authorisation architecture, all the
configured authorisation tasks are part of an authorisation chain. A PreEvent
arriving for authorisation, visits authorisation tasks one after the other, unless a
previously visited task has already rejected the execution of that event. A query
is executed if it has been approved (or ignored) by all the tasks in the chain.

Developers can provide the aforementioned logic by implementing an ab-
stract class (namely GenericAuthorisationTask) which is part of the analyt-
ics infrastructure. More specifically, they need to implement two methods for
each authorisation task: i) the checkCondition(Event event) and ii) shouldIRe-
ject(Event event). The first method (i.e., checkCondition(. . . )), checks if the
task is responsible for approving or rejecting a query. The second method (i.e.,
shouldIReject(. . . )), includes the logic that defines if a query should be approved
or rejected. The shouldIReject method is called if and only if the checkCondition
method of the task evaluates to true.

The authorisation chain is built using the Flink’s concept of side outputs [11].
Each stream of data in Flink can be transformed to another stream in which the
data is grouped using tags based on some logic defined in the transformation
operator. The analytics architecture automatically tags PreEvents into specific
groups that facilitate the orchestration of the flow of events within the authori-
sation chain. More specifically, all rejected events, no matter which task rejected
them, end up in a group tagged “Rejected”. The events that were either approved
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or not checked (because of the “checkCondition” method returning “false”) by a
task are placed under the group which is tagged by the name of the Task. Those
are given as input to the next task in the chain where the process is repeated.

An orchestrator application is automatically generated (in Java) using a
purpose-built code generator. The orchestrator subscribes to the pre-event queue,
consumes the event stream and is responsible for re-directing the events to
the appropriate tasks based on the results of each task’s checkCondition and
shouldIReject methods.

3.3 Analytics Tasks

Analytics tasks are implemented as individual Flink jobs. Each analytics task
needs to implement the analyze method of an IAnalyzer interface provided by
the architecture. The analyze method automatically subscribes to the post-event
queue and provides a Flink datastream of PostEvent objects to the method.
Developers are able to define their scenarios by using Flink’s the built-in stream
operators (e.g., map, process, aggegate, sum, etc.). A provided class that includes
the main method for calling the analytics tasks is then used to deploy the scenario
in a Flink execution enviorment.

3.4 Deployment

The analytics and authorisation tasks can be deployed in a Flink/Kafka infras-
tructure. This can be achieved by using one of the available containerized deploy-
ments (i.e., Docker and Kubernetes). TyphonDL (see Section 2) generates the
necessary deployment scripts. For Docker, we use the wurstmeister Zookeeper4

and Kafka5 DockerHub images. The Kubernetes deployment is based on the
Strimzi [9] package. Flink cluster deployment is achieved by using the official
Apache Flink cluster deployment scripts [10].

4 Scalability Evaluation

The evaluation of the scalability of the proposed architecture requires inges-
tion of large volumes of data. In order to evaluate our work we developed an
e-shop simulator that produce large volumes of synthetic, but realistic, data.
The e-shop simulator is based on the notion of “Agents”. An agent simulates
the behaviour of one type of shopper (i.e., a User) in an e-shop. Developers can
use either the executeQuery(. . . ) method to execute a query against the poly-
store or the createAndPublishPostEvent(. . . )/createAndPublishPreEvent(. . . ) to
skip the execution of the command against the polystore and create directly a
PostEvent/PreEvent object in the relevant analytics queues. To be able to eval-
uate the scalability of the proposed architecture, we opted for the latter option
avoiding the overhead of having to wait for the execution of the actual command
against the database in order to produce the Pre/PostEvent object.

4 https://hub.docker.com/r/wurstmeister/zookeeper/
5 https://hub.docker.com/r/wurstmeister/kafka/
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4.1 Authorisation Chain Scalability Evaluation

In order to test the scalability of the authorisation chain, we produced an in-
creasing number of events which were given as input into the Pre-Event queue.
More specifically, users (agents) were simulating the placement of orders in the
e-shop. TyphonQL “insert” commands (see Listing 1.1) were generated for the
placed orders including details of the credit card used to pay the order. Three
authorisation tasks were created, applying different validation rules on the credit
card used. The first task checks the existence of a credit card in the query, the
second if the credit card has expired and the third if the credit card number was
valid.

Listing 1.1: An example TyphonQL insert command used in the experiment.

insert Order { id : ‘ . . . ’ , date : ‘ . . . ’ , t o t a l : ‘ . . . ’ , products : [ . . . ] , user : ‘ . . . ’ ,
paidWith : CreditCard { id : ‘ . . . ’ , number: ‘6007−2216−3740−9000 ’ ,
expiryDate : ‘2021−06−25T08 : 36 : 13 . 656}}

As described in Section 3, if an event is rejected by one authorisation task, it
is not passed to the following task(s) in the chain but is directed automatically to
the authorisation queue as rejected. In the simulator, the agents were producing
orders that had always a credit card assigned to them, so they were approved
by the first task. From those, half (50%) were having an expired credit card
attached to them thus, they were rejected from the second task. Those passed
successfully from the second task have a 50% chance of having an invalid credit
card number. Following this pattern, we increased the variability as some of the
events will be passing the whole chain, while some will be rejected earlier.

The chain was deployed in a cluster of three machines; one acting as the
master and the other two as the workers6. In our experiment, the master was
also hosting the relevant Kafka topics (PRE and AUTH). We restricted the Flink
deployment to allocate and use only 8GB of the available 64GB for each worker.

Figure 5 shows the total execution time (in seconds) for processing all the
event and posting the (rejected/approved) PreEvent in the authorisation queue.
The graph shows linear scalability which confirms our expectation as the ana-
lytics architecture is built atop tools such as Apache Flink and does not add
any bottleneck. The master node’s average memory increases steadily and av-
erages between 450 and 650MB as shown in Figure 5. The CPU is around 50%
for all the experiments. The master node in this experiment was hosting the
Kafka queue and more significantly the AUTH topic in which the workers were
publishing the results, thus, the CPU utilisaton is justified by having the master
node writing these events in the authorisation queue.

The average memory consumption and CPU utilisation for the workers is
shown in Figure 6. In this scenario, both workers requiring increasing amount of
memory for each scenario from the operating system while the CPU utilisation
is between 60-70%. The CPU utilisation and memory consumption is similar
across the cluster’s workers which shows even distribution of work.

6 AMD Opteron(tm) Processor 4226 – 6-cores @ 2.7Ghz, 4x16GB DD3 1066MHz RAM
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Fig. 5: Execution time, master’s memory and CPU utilisation for authorisation.

Fig. 6: Workers’ memory consumption and CPU utilisation for authorisation.

4.2 Analytics Scalability Evaluation

We implemented a scenario in which a list of the top products that users browsed
within a specific time window is produced. The simulator was instantiated with
a varying number of users each of which was randomly navigating a number of
products. Navigation of the catalogue has a result of generating one TyphonQL
“select” query (e.g., from Product p select p where p.id = ‘...’ ) each time a
product page was visited.

The implemented analytics scenario, consumes only those events (i.e., select
events on the table Product). As it might be the case that users in real deploy-
ments might exploit such an analytics scenario to promote their products (i.e.,
by visiting their product page repeatedly), we were amending the slots attribute
of the PreEvent object linked to the PostEvent object that our simulator gener-
ated with the id of the user that requested the execution of the command. Such
information can be taken for example from the query where the session user
id is passed as a comment to the produced query. We produced an increasing
number of events which were given as input into the analytics architecture. The
analytics code was deployed in the same cluster configuration as described in
the evaluation of the authorisation chain.

The time needed is shown in Figure 7. The graph shows again linear scal-
ability and our architecture does not add any bottleneck. The CPU utilisation
and memory consumption for the master node (see Figure 7) remain quite low
as in this experiment the workers are only reading from the POST queue hosted
in the master and thus the master is not required to perform any writes to the
authorisation queue.
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Fig. 7: Execution time, master’s memory and CPU for the analytics experiment.

The workers’ average and max memory consumption and the average CPU
utilisation for the five simulated scenarios are shown in Figure 8. The workers
are using above 80% of the available processing power on average across the
five different scalability scenarios. Also, the JVM is claiming all the necessary
memory (especially in the last 4 of the five scenarios) but is not running out of
memory which is explained by the Java garbage collector replacing unnecessary
memory when needed. The load balance is equally split among the workers both
in terms of CPU utilisation and memory usage which demonstrates that the
workload is shared equally in the cluster.

Fig. 8: Workers’ memory consumption in the analytics scalability experiment.

5 Related Work

Different systems [8] have been proposed to capture database related evens to
mostly allow replication or migration of databases. Connectors (e.g., KafkaCon-
nect [2]) are registered to databases’ specific mechanisms to extract already
stored data and identify changes. Approaches like Maxwell’s Deamon [12] and
Oracle GoldenGate [7] monitor the database’s log (i.e., binlog) to extract events
but these are restricted to use only on relational databases. Debezium [3] offers
an event capturing mechanism that supports both relational and non-relational
databases. However, it only captures changing commands (i.e., insert, update,
delete) and not select queries while it supports a limited number of databases.
The Confluent platform [1] is a real-time event streaming application. It sup-
ports over 100 connectors to databases and filesystems each of which support
different level of granularity of the events that can be captured.

The aforementioned approaches are either limited by the support for a specific
set of database types or the amount of processible information. In addition, some
of them require duplication of data or storing of unrelated events (e.g., the SQL
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binlog stores, except the DML commands, DDL commands, too). All of the
approaches require the use (and development in case it is not available) of a
custom connector for every database and database type in the system. Except
for the fact that such connectors might not be possible to be implemented if
the database does not offer a related mechanism, the different connectors can
acquire different levels of information based on what information the database
can offer. In addition, these connectors act separately in each database. If a
single TyphonQL command affects more than one database, a common scenario
in polystores, then the matching of these events is a difficult - if possible at
all - task. Finally, to the best of our knowledge, none of the approaches offer a
pre-execution event capturing and authorisation mechanism.

The latter can be achieved with the use of database triggers. However, not
all databases allow the execution of custom logic before the execution of the
commands thus such a feature can be used with some of the databases in the
polystore. Most allow the use of triggers after the actual execution of the com-
mand. However, this comes with the drawback of having to define specific triggers
for each type of command and table/document affected separately which does
not allow the creation of a single event that contains all the information needed
for the extraction of analytics if a single polystore command affects multiple
tables/documents within the same database and across the different databases.

Our approach offers both a before and after execution event capturing mech-
anism. Authorisation and analytics tasks have access to the data and databases
the command affects, no matter if the latter had impact on multiple entities
and different types of databases as it is based on a unified syntax (that of Ty-
phonQL). Also, the latter allows future support of event capturing for any new
database added to the polystore without requiring developers to implement spe-
cific database event capturing/triggering mechanism. Finally, in the case of mi-
gration of data from one type of database to another, the authorisation/analytics
tasks do not need to be redeveloped to use the database-specific event triggering
syntax.

6 Conclusions and Future Work

In this paper we presented a distributed architecture for analytics based on
polystore queries. We also presented a pre-execution authorisation mechanism.
Finally, the scalability of both the authorisation and the analytics components
of the proposed architecture is evaluated. In future work, we will explore if
authorisation tasks can be re-arranged automatically in the chain. Tasks that
reject a higher proportion of events or require less time to execute could be
positioned earlier in the chain. Machine learning can be used to identify the
most efficient chains based on different features among those described (i.e.,
execution time and rejection rate). Finally, applying capture data change (CDC)
mechanisms to further facilitate the extraction of analytics would be of interest.
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